This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: rspsbc with two quantifying variables. This proof is rspsbc2VD automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rspsbc2 | |- ( A e. B -> ( C e. D -> ( A. x e. B A. y e. D ph -> [. C / y ]. [. A / x ]. ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd | |- ( A e. B -> ( C e. D -> C e. D ) ) |
|
| 2 | rspsbc | |- ( A e. B -> ( A. x e. B A. y e. D ph -> [. A / x ]. A. y e. D ph ) ) |
|
| 3 | 2 | a1d | |- ( A e. B -> ( C e. D -> ( A. x e. B A. y e. D ph -> [. A / x ]. A. y e. D ph ) ) ) |
| 4 | sbcralg | |- ( A e. B -> ( [. A / x ]. A. y e. D ph <-> A. y e. D [. A / x ]. ph ) ) |
|
| 5 | 4 | biimpd | |- ( A e. B -> ( [. A / x ]. A. y e. D ph -> A. y e. D [. A / x ]. ph ) ) |
| 6 | 3 5 | syl6d | |- ( A e. B -> ( C e. D -> ( A. x e. B A. y e. D ph -> A. y e. D [. A / x ]. ph ) ) ) |
| 7 | rspsbc | |- ( C e. D -> ( A. y e. D [. A / x ]. ph -> [. C / y ]. [. A / x ]. ph ) ) |
|
| 8 | 1 6 7 | syl10 | |- ( A e. B -> ( C e. D -> ( A. x e. B A. y e. D ph -> [. C / y ]. [. A / x ]. ph ) ) ) |