This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Virtual deduction proof of alrim3con13v . The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
| 1:: | |- (. ( ph -> A. x ph ) ->. ( ph -> A. x ph ) ). |
| 2:: | |- (. ( ph -> A. x ph ) ,. ( ps /\ ph /\ ch ) ->. ( ps /\ ph /\ ch ) ). |
| 3:2,?: e2 | |- (. ( ph -> A. x ph ) ,. ( ps /\ ph /\ ch ) ->. ps ). |
| 4:2,?: e2 | |- (. ( ph -> A. x ph ) ,. ( ps /\ ph /\ ch ) ->. ph ). |
| 5:2,?: e2 | |- (. ( ph -> A. x ph ) ,. ( ps /\ ph /\ ch ) ->. ch ). |
| 6:1,4,?: e12 | |- (. ( ph -> A. x ph ) ,. ( ps /\ ph /\ ch ) ->. A. x ph ). |
| 7:3,?: e2 | |- (. ( ph -> A. x ph ) ,. ( ps /\ ph /\ ch ) ->. A. x ps ). |
| 8:5,?: e2 | |- (. ( ph -> A. x ph ) ,. ( ps /\ ph /\ ch ) ->. A. x ch ). |
| 9:7,6,8,?: e222 | |- (. ( ph -> A. x ph ) ,. ( ps /\ ph /\ ch ) ->. ( A. x ps /\ A. x ph /\ A. x ch ) ). |
| 10:9,?: e2 | |- (. ( ph -> A. x ph ) ,. ( ps /\ ph /\ ch ) ->. A. x ( ps /\ ph /\ ch ) ). |
| 11:10:in2 | |- (. ( ph -> A. x ph ) ->. ( ( ps /\ ph /\ ch ) -> A. x ( ps /\ ph /\ ch ) ) ). |
| qed:11:in1 | |- ( ( ph -> A. x ph ) -> ( ( ps /\ ph /\ ch ) -> A. x ( ps /\ ph /\ ch ) ) ) |
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 19.21a3con13vVD | |- ( ( ph -> A. x ph ) -> ( ( ps /\ ph /\ ch ) -> A. x ( ps /\ ph /\ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn2 | |- (. ( ph -> A. x ph ) ,. ( ps /\ ph /\ ch ) ->. ( ps /\ ph /\ ch ) ). |
|
| 2 | simp1 | |- ( ( ps /\ ph /\ ch ) -> ps ) |
|
| 3 | 1 2 | e2 | |- (. ( ph -> A. x ph ) ,. ( ps /\ ph /\ ch ) ->. ps ). |
| 4 | ax-5 | |- ( ps -> A. x ps ) |
|
| 5 | 3 4 | e2 | |- (. ( ph -> A. x ph ) ,. ( ps /\ ph /\ ch ) ->. A. x ps ). |
| 6 | idn1 | |- (. ( ph -> A. x ph ) ->. ( ph -> A. x ph ) ). |
|
| 7 | simp2 | |- ( ( ps /\ ph /\ ch ) -> ph ) |
|
| 8 | 1 7 | e2 | |- (. ( ph -> A. x ph ) ,. ( ps /\ ph /\ ch ) ->. ph ). |
| 9 | id | |- ( ( ph -> A. x ph ) -> ( ph -> A. x ph ) ) |
|
| 10 | 6 8 9 | e12 | |- (. ( ph -> A. x ph ) ,. ( ps /\ ph /\ ch ) ->. A. x ph ). |
| 11 | simp3 | |- ( ( ps /\ ph /\ ch ) -> ch ) |
|
| 12 | 1 11 | e2 | |- (. ( ph -> A. x ph ) ,. ( ps /\ ph /\ ch ) ->. ch ). |
| 13 | ax-5 | |- ( ch -> A. x ch ) |
|
| 14 | 12 13 | e2 | |- (. ( ph -> A. x ph ) ,. ( ps /\ ph /\ ch ) ->. A. x ch ). |
| 15 | pm3.2an3 | |- ( A. x ps -> ( A. x ph -> ( A. x ch -> ( A. x ps /\ A. x ph /\ A. x ch ) ) ) ) |
|
| 16 | 5 10 14 15 | e222 | |- (. ( ph -> A. x ph ) ,. ( ps /\ ph /\ ch ) ->. ( A. x ps /\ A. x ph /\ A. x ch ) ). |
| 17 | 19.26-3an | |- ( A. x ( ps /\ ph /\ ch ) <-> ( A. x ps /\ A. x ph /\ A. x ch ) ) |
|
| 18 | 17 | biimpri | |- ( ( A. x ps /\ A. x ph /\ A. x ch ) -> A. x ( ps /\ ph /\ ch ) ) |
| 19 | 16 18 | e2 | |- (. ( ph -> A. x ph ) ,. ( ps /\ ph /\ ch ) ->. A. x ( ps /\ ph /\ ch ) ). |
| 20 | 19 | in2 | |- (. ( ph -> A. x ph ) ->. ( ( ps /\ ph /\ ch ) -> A. x ( ps /\ ph /\ ch ) ) ). |
| 21 | 20 | in1 | |- ( ( ph -> A. x ph ) -> ( ( ps /\ ph /\ ch ) -> A. x ( ps /\ ph /\ ch ) ) ) |