This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Half of an integer greater than 1 is less than or equal to the integer minus 1. (Contributed by AV, 1-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ge2halflem1 | |- ( N e. ( ZZ>= ` 2 ) -> ( N / 2 ) <_ ( N - 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re | |- 2 e. RR |
|
| 2 | 1 | a1i | |- ( N e. ( ZZ>= ` 2 ) -> 2 e. RR ) |
| 3 | eluzelre | |- ( N e. ( ZZ>= ` 2 ) -> N e. RR ) |
|
| 4 | 2 3 | remulcld | |- ( N e. ( ZZ>= ` 2 ) -> ( 2 x. N ) e. RR ) |
| 5 | eluzle | |- ( N e. ( ZZ>= ` 2 ) -> 2 <_ N ) |
|
| 6 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 7 | 6 | a1i | |- ( N e. ( ZZ>= ` 2 ) -> ( 2 - 1 ) = 1 ) |
| 8 | 7 | oveq1d | |- ( N e. ( ZZ>= ` 2 ) -> ( ( 2 - 1 ) x. N ) = ( 1 x. N ) ) |
| 9 | eluzelcn | |- ( N e. ( ZZ>= ` 2 ) -> N e. CC ) |
|
| 10 | 9 | mullidd | |- ( N e. ( ZZ>= ` 2 ) -> ( 1 x. N ) = N ) |
| 11 | 8 10 | eqtrd | |- ( N e. ( ZZ>= ` 2 ) -> ( ( 2 - 1 ) x. N ) = N ) |
| 12 | 5 11 | breqtrrd | |- ( N e. ( ZZ>= ` 2 ) -> 2 <_ ( ( 2 - 1 ) x. N ) ) |
| 13 | 2cnd | |- ( N e. ( ZZ>= ` 2 ) -> 2 e. CC ) |
|
| 14 | 13 9 | mulsubfacd | |- ( N e. ( ZZ>= ` 2 ) -> ( ( 2 x. N ) - N ) = ( ( 2 - 1 ) x. N ) ) |
| 15 | 12 14 | breqtrrd | |- ( N e. ( ZZ>= ` 2 ) -> 2 <_ ( ( 2 x. N ) - N ) ) |
| 16 | 2 4 3 15 | lesubd | |- ( N e. ( ZZ>= ` 2 ) -> N <_ ( ( 2 x. N ) - 2 ) ) |
| 17 | 13 9 | muls1d | |- ( N e. ( ZZ>= ` 2 ) -> ( 2 x. ( N - 1 ) ) = ( ( 2 x. N ) - 2 ) ) |
| 18 | 16 17 | breqtrrd | |- ( N e. ( ZZ>= ` 2 ) -> N <_ ( 2 x. ( N - 1 ) ) ) |
| 19 | 1red | |- ( N e. ( ZZ>= ` 2 ) -> 1 e. RR ) |
|
| 20 | 3 19 | resubcld | |- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. RR ) |
| 21 | 2rp | |- 2 e. RR+ |
|
| 22 | 21 | a1i | |- ( N e. ( ZZ>= ` 2 ) -> 2 e. RR+ ) |
| 23 | 3 20 22 | ledivmuld | |- ( N e. ( ZZ>= ` 2 ) -> ( ( N / 2 ) <_ ( N - 1 ) <-> N <_ ( 2 x. ( N - 1 ) ) ) ) |
| 24 | 18 23 | mpbird | |- ( N e. ( ZZ>= ` 2 ) -> ( N / 2 ) <_ ( N - 1 ) ) |