This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann function at a successor (of the first argument). This is the second equation of Péter's definition of the Ackermann function. (Contributed by AV, 4-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackvalsuc0val | |- ( M e. NN0 -> ( ( Ack ` ( M + 1 ) ) ` 0 ) = ( ( Ack ` M ) ` 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 | |- 0 e. NN0 |
|
| 2 | ackvalsuc1 | |- ( ( M e. NN0 /\ 0 e. NN0 ) -> ( ( Ack ` ( M + 1 ) ) ` 0 ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( 0 + 1 ) ) ` 1 ) ) |
|
| 3 | 1 2 | mpan2 | |- ( M e. NN0 -> ( ( Ack ` ( M + 1 ) ) ` 0 ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( 0 + 1 ) ) ` 1 ) ) |
| 4 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 5 | 4 | a1i | |- ( M e. NN0 -> ( 0 + 1 ) = 1 ) |
| 6 | 5 | fveq2d | |- ( M e. NN0 -> ( ( IterComp ` ( Ack ` M ) ) ` ( 0 + 1 ) ) = ( ( IterComp ` ( Ack ` M ) ) ` 1 ) ) |
| 7 | ackfnnn0 | |- ( M e. NN0 -> ( Ack ` M ) Fn NN0 ) |
|
| 8 | fnfun | |- ( ( Ack ` M ) Fn NN0 -> Fun ( Ack ` M ) ) |
|
| 9 | funrel | |- ( Fun ( Ack ` M ) -> Rel ( Ack ` M ) ) |
|
| 10 | 7 8 9 | 3syl | |- ( M e. NN0 -> Rel ( Ack ` M ) ) |
| 11 | fvex | |- ( Ack ` M ) e. _V |
|
| 12 | itcoval1 | |- ( ( Rel ( Ack ` M ) /\ ( Ack ` M ) e. _V ) -> ( ( IterComp ` ( Ack ` M ) ) ` 1 ) = ( Ack ` M ) ) |
|
| 13 | 10 11 12 | sylancl | |- ( M e. NN0 -> ( ( IterComp ` ( Ack ` M ) ) ` 1 ) = ( Ack ` M ) ) |
| 14 | 6 13 | eqtrd | |- ( M e. NN0 -> ( ( IterComp ` ( Ack ` M ) ) ` ( 0 + 1 ) ) = ( Ack ` M ) ) |
| 15 | 14 | fveq1d | |- ( M e. NN0 -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( 0 + 1 ) ) ` 1 ) = ( ( Ack ` M ) ` 1 ) ) |
| 16 | 3 15 | eqtrd | |- ( M e. NN0 -> ( ( Ack ` ( M + 1 ) ) ` 0 ) = ( ( Ack ` M ) ` 1 ) ) |