This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infinite Cartesian product of a family B ( x ) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 . (Contributed by Mario Carneiro, 22-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ixpn0 | |- ( X_ x e. A B =/= (/) -> A. x e. A B =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | |- ( X_ x e. A B =/= (/) <-> E. f f e. X_ x e. A B ) |
|
| 2 | df-ixp | |- X_ x e. A B = { f | ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. B ) } |
|
| 3 | 2 | eqabri | |- ( f e. X_ x e. A B <-> ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. B ) ) |
| 4 | ne0i | |- ( ( f ` x ) e. B -> B =/= (/) ) |
|
| 5 | 4 | ralimi | |- ( A. x e. A ( f ` x ) e. B -> A. x e. A B =/= (/) ) |
| 6 | 3 5 | simplbiim | |- ( f e. X_ x e. A B -> A. x e. A B =/= (/) ) |
| 7 | 6 | exlimiv | |- ( E. f f e. X_ x e. A B -> A. x e. A B =/= (/) ) |
| 8 | 1 7 | sylbi | |- ( X_ x e. A B =/= (/) -> A. x e. A B =/= (/) ) |