This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent of Axiom of Choice. (Contributed by NM, 31-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ac5b.1 | |- A e. _V |
|
| Assertion | ac5b | |- ( A. x e. A x =/= (/) -> E. f ( f : A --> U. A /\ A. x e. A ( f ` x ) e. x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac5b.1 | |- A e. _V |
|
| 2 | 1 | uniex | |- U. A e. _V |
| 3 | numth3 | |- ( U. A e. _V -> U. A e. dom card ) |
|
| 4 | 2 3 | mp1i | |- ( A. x e. A x =/= (/) -> U. A e. dom card ) |
| 5 | neirr | |- -. (/) =/= (/) |
|
| 6 | neeq1 | |- ( x = (/) -> ( x =/= (/) <-> (/) =/= (/) ) ) |
|
| 7 | 6 | rspccv | |- ( A. x e. A x =/= (/) -> ( (/) e. A -> (/) =/= (/) ) ) |
| 8 | 5 7 | mtoi | |- ( A. x e. A x =/= (/) -> -. (/) e. A ) |
| 9 | ac5num | |- ( ( U. A e. dom card /\ -. (/) e. A ) -> E. f ( f : A --> U. A /\ A. x e. A ( f ` x ) e. x ) ) |
|
| 10 | 4 8 9 | syl2anc | |- ( A. x e. A x =/= (/) -> E. f ( f : A --> U. A /\ A. x e. A ( f ` x ) e. x ) ) |