This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the absolute value of a complex number is less than a real, its difference from the real is nonzero. (Contributed by NM, 2-Nov-2007) (Proof shortened by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abssubne0 | |- ( ( A e. CC /\ B e. RR /\ ( abs ` A ) < B ) -> ( B - A ) =/= 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | |- ( ( ( A e. CC /\ B e. RR ) /\ ( abs ` A ) < B ) -> B e. RR ) |
|
| 2 | 1 | recnd | |- ( ( ( A e. CC /\ B e. RR ) /\ ( abs ` A ) < B ) -> B e. CC ) |
| 3 | simpll | |- ( ( ( A e. CC /\ B e. RR ) /\ ( abs ` A ) < B ) -> A e. CC ) |
|
| 4 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 5 | 3 4 | syl | |- ( ( ( A e. CC /\ B e. RR ) /\ ( abs ` A ) < B ) -> ( abs ` A ) e. RR ) |
| 6 | abscl | |- ( B e. CC -> ( abs ` B ) e. RR ) |
|
| 7 | 2 6 | syl | |- ( ( ( A e. CC /\ B e. RR ) /\ ( abs ` A ) < B ) -> ( abs ` B ) e. RR ) |
| 8 | simpr | |- ( ( ( A e. CC /\ B e. RR ) /\ ( abs ` A ) < B ) -> ( abs ` A ) < B ) |
|
| 9 | leabs | |- ( B e. RR -> B <_ ( abs ` B ) ) |
|
| 10 | 1 9 | syl | |- ( ( ( A e. CC /\ B e. RR ) /\ ( abs ` A ) < B ) -> B <_ ( abs ` B ) ) |
| 11 | 5 1 7 8 10 | ltletrd | |- ( ( ( A e. CC /\ B e. RR ) /\ ( abs ` A ) < B ) -> ( abs ` A ) < ( abs ` B ) ) |
| 12 | 5 11 | gtned | |- ( ( ( A e. CC /\ B e. RR ) /\ ( abs ` A ) < B ) -> ( abs ` B ) =/= ( abs ` A ) ) |
| 13 | fveq2 | |- ( B = A -> ( abs ` B ) = ( abs ` A ) ) |
|
| 14 | 13 | necon3i | |- ( ( abs ` B ) =/= ( abs ` A ) -> B =/= A ) |
| 15 | 12 14 | syl | |- ( ( ( A e. CC /\ B e. RR ) /\ ( abs ` A ) < B ) -> B =/= A ) |
| 16 | 2 3 15 | subne0d | |- ( ( ( A e. CC /\ B e. RR ) /\ ( abs ` A ) < B ) -> ( B - A ) =/= 0 ) |
| 17 | 16 | 3impa | |- ( ( A e. CC /\ B e. RR /\ ( abs ` A ) < B ) -> ( B - A ) =/= 0 ) |