This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the absolute value of a complex number is less than a real, its difference from the real is nonzero. (Contributed by NM, 2-Nov-2007) (Proof shortened by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abssubne0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( 𝐵 − 𝐴 ) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → 𝐵 ∈ ℝ ) | |
| 2 | 1 | recnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → 𝐵 ∈ ℂ ) |
| 3 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → 𝐴 ∈ ℂ ) | |
| 4 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | 3 4 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 6 | abscl | ⊢ ( 𝐵 ∈ ℂ → ( abs ‘ 𝐵 ) ∈ ℝ ) | |
| 7 | 2 6 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 8 | simpr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( abs ‘ 𝐴 ) < 𝐵 ) | |
| 9 | leabs | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ≤ ( abs ‘ 𝐵 ) ) | |
| 10 | 1 9 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → 𝐵 ≤ ( abs ‘ 𝐵 ) ) |
| 11 | 5 1 7 8 10 | ltletrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( abs ‘ 𝐴 ) < ( abs ‘ 𝐵 ) ) |
| 12 | 5 11 | gtned | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( abs ‘ 𝐵 ) ≠ ( abs ‘ 𝐴 ) ) |
| 13 | fveq2 | ⊢ ( 𝐵 = 𝐴 → ( abs ‘ 𝐵 ) = ( abs ‘ 𝐴 ) ) | |
| 14 | 13 | necon3i | ⊢ ( ( abs ‘ 𝐵 ) ≠ ( abs ‘ 𝐴 ) → 𝐵 ≠ 𝐴 ) |
| 15 | 12 14 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → 𝐵 ≠ 𝐴 ) |
| 16 | 2 3 15 | subne0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( 𝐵 − 𝐴 ) ≠ 0 ) |
| 17 | 16 | 3impa | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ ( abs ‘ 𝐴 ) < 𝐵 ) → ( 𝐵 − 𝐴 ) ≠ 0 ) |