This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For each finite subset of the integers not containing 0 there is a positive integer which is divisible by each element of this subset. (Contributed by AV, 21-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fissn0dvds | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> E. n e. NN A. m e. Z m || n ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> Z C_ ZZ ) |
|
| 2 | simp2 | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> Z e. Fin ) |
|
| 3 | eqid | |- ( abs ` prod_ k e. Z k ) = ( abs ` prod_ k e. Z k ) |
|
| 4 | simp3 | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> 0 e/ Z ) |
|
| 5 | 1 2 3 4 | absprodnn | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> ( abs ` prod_ k e. Z k ) e. NN ) |
| 6 | breq2 | |- ( n = ( abs ` prod_ k e. Z k ) -> ( m || n <-> m || ( abs ` prod_ k e. Z k ) ) ) |
|
| 7 | 6 | ralbidv | |- ( n = ( abs ` prod_ k e. Z k ) -> ( A. m e. Z m || n <-> A. m e. Z m || ( abs ` prod_ k e. Z k ) ) ) |
| 8 | 7 | adantl | |- ( ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) /\ n = ( abs ` prod_ k e. Z k ) ) -> ( A. m e. Z m || n <-> A. m e. Z m || ( abs ` prod_ k e. Z k ) ) ) |
| 9 | 1 2 3 | absproddvds | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> A. m e. Z m || ( abs ` prod_ k e. Z k ) ) |
| 10 | 5 8 9 | rspcedvd | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> E. n e. NN A. m e. Z m || n ) |