This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 10 for 3wlkd . (Contributed by AV, 14-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2wlkd.p | |- P = <" A B C "> |
|
| 2wlkd.f | |- F = <" J K "> |
||
| 2wlkd.s | |- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
||
| 2wlkd.n | |- ( ph -> ( A =/= B /\ B =/= C ) ) |
||
| 2wlkd.e | |- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) |
||
| Assertion | 2wlkdlem10 | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | |- P = <" A B C "> |
|
| 2 | 2wlkd.f | |- F = <" J K "> |
|
| 3 | 2wlkd.s | |- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
|
| 4 | 2wlkd.n | |- ( ph -> ( A =/= B /\ B =/= C ) ) |
|
| 5 | 2wlkd.e | |- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) |
|
| 6 | 1 2 3 4 5 | 2wlkdlem9 | |- ( ph -> ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) ) ) |
| 7 | 1 2 3 | 2wlkdlem3 | |- ( ph -> ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) |
| 8 | preq12 | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> { ( P ` 0 ) , ( P ` 1 ) } = { A , B } ) |
|
| 9 | 8 | 3adant3 | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> { ( P ` 0 ) , ( P ` 1 ) } = { A , B } ) |
| 10 | 9 | sseq1d | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) <-> { A , B } C_ ( I ` ( F ` 0 ) ) ) ) |
| 11 | preq12 | |- ( ( ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> { ( P ` 1 ) , ( P ` 2 ) } = { B , C } ) |
|
| 12 | 11 | 3adant1 | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> { ( P ` 1 ) , ( P ` 2 ) } = { B , C } ) |
| 13 | 12 | sseq1d | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) <-> { B , C } C_ ( I ` ( F ` 1 ) ) ) ) |
| 14 | 10 13 | anbi12d | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) /\ { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) ) <-> ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) ) ) ) |
| 15 | 7 14 | syl | |- ( ph -> ( ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) /\ { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) ) <-> ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) ) ) ) |
| 16 | 6 15 | mpbird | |- ( ph -> ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) /\ { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) ) ) |
| 17 | 1 2 | 2wlkdlem2 | |- ( 0 ..^ ( # ` F ) ) = { 0 , 1 } |
| 18 | 17 | raleqi | |- ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) <-> A. k e. { 0 , 1 } { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
| 19 | c0ex | |- 0 e. _V |
|
| 20 | 1ex | |- 1 e. _V |
|
| 21 | fveq2 | |- ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) |
|
| 22 | fv0p1e1 | |- ( k = 0 -> ( P ` ( k + 1 ) ) = ( P ` 1 ) ) |
|
| 23 | 21 22 | preq12d | |- ( k = 0 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 0 ) , ( P ` 1 ) } ) |
| 24 | 2fveq3 | |- ( k = 0 -> ( I ` ( F ` k ) ) = ( I ` ( F ` 0 ) ) ) |
|
| 25 | 23 24 | sseq12d | |- ( k = 0 -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) <-> { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) |
| 26 | fveq2 | |- ( k = 1 -> ( P ` k ) = ( P ` 1 ) ) |
|
| 27 | oveq1 | |- ( k = 1 -> ( k + 1 ) = ( 1 + 1 ) ) |
|
| 28 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 29 | 27 28 | eqtrdi | |- ( k = 1 -> ( k + 1 ) = 2 ) |
| 30 | 29 | fveq2d | |- ( k = 1 -> ( P ` ( k + 1 ) ) = ( P ` 2 ) ) |
| 31 | 26 30 | preq12d | |- ( k = 1 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 1 ) , ( P ` 2 ) } ) |
| 32 | 2fveq3 | |- ( k = 1 -> ( I ` ( F ` k ) ) = ( I ` ( F ` 1 ) ) ) |
|
| 33 | 31 32 | sseq12d | |- ( k = 1 -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) <-> { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) ) ) |
| 34 | 19 20 25 33 | ralpr | |- ( A. k e. { 0 , 1 } { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) <-> ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) /\ { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) ) ) |
| 35 | 18 34 | bitri | |- ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) <-> ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) /\ { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) ) ) |
| 36 | 16 35 | sylibr | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |