This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for 2wlkd . (Contributed by AV, 14-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2wlkd.p | |- P = <" A B C "> |
|
| 2wlkd.f | |- F = <" J K "> |
||
| 2wlkd.s | |- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
||
| Assertion | 2wlkdlem3 | |- ( ph -> ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | |- P = <" A B C "> |
|
| 2 | 2wlkd.f | |- F = <" J K "> |
|
| 3 | 2wlkd.s | |- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
|
| 4 | 1 | fveq1i | |- ( P ` 0 ) = ( <" A B C "> ` 0 ) |
| 5 | s3fv0 | |- ( A e. V -> ( <" A B C "> ` 0 ) = A ) |
|
| 6 | 4 5 | eqtrid | |- ( A e. V -> ( P ` 0 ) = A ) |
| 7 | 1 | fveq1i | |- ( P ` 1 ) = ( <" A B C "> ` 1 ) |
| 8 | s3fv1 | |- ( B e. V -> ( <" A B C "> ` 1 ) = B ) |
|
| 9 | 7 8 | eqtrid | |- ( B e. V -> ( P ` 1 ) = B ) |
| 10 | 1 | fveq1i | |- ( P ` 2 ) = ( <" A B C "> ` 2 ) |
| 11 | s3fv2 | |- ( C e. V -> ( <" A B C "> ` 2 ) = C ) |
|
| 12 | 10 11 | eqtrid | |- ( C e. V -> ( P ` 2 ) = C ) |
| 13 | 6 9 12 | 3anim123i | |- ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) |
| 14 | 3 13 | syl | |- ( ph -> ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) |