| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idn1 |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ). |
| 2 |
|
simpl |
|- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) -> ( x = u /\ y = v ) ) |
| 3 |
1 2
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( x = u /\ y = v ) ). |
| 4 |
|
simpl |
|- ( ( x = u /\ y = v ) -> x = u ) |
| 5 |
3 4
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. x = u ). |
| 6 |
|
simpr |
|- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) -> [ u / x ] [ v / y ] ph ) |
| 7 |
1 6
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. [ u / x ] [ v / y ] ph ). |
| 8 |
|
pm3.21 |
|- ( x = u -> ( [ u / x ] [ v / y ] ph -> ( [ u / x ] [ v / y ] ph /\ x = u ) ) ) |
| 9 |
5 7 8
|
e11 |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( [ u / x ] [ v / y ] ph /\ x = u ) ). |
| 10 |
|
sbequ2 |
|- ( x = u -> ( [ u / x ] [ v / y ] ph -> [ v / y ] ph ) ) |
| 11 |
10
|
imdistanri |
|- ( ( [ u / x ] [ v / y ] ph /\ x = u ) -> ( [ v / y ] ph /\ x = u ) ) |
| 12 |
9 11
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( [ v / y ] ph /\ x = u ) ). |
| 13 |
|
simpl |
|- ( ( [ v / y ] ph /\ x = u ) -> [ v / y ] ph ) |
| 14 |
12 13
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. [ v / y ] ph ). |
| 15 |
|
simpr |
|- ( ( x = u /\ y = v ) -> y = v ) |
| 16 |
3 15
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. y = v ). |
| 17 |
|
pm3.2 |
|- ( [ v / y ] ph -> ( y = v -> ( [ v / y ] ph /\ y = v ) ) ) |
| 18 |
14 16 17
|
e11 |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( [ v / y ] ph /\ y = v ) ). |
| 19 |
|
sbequ2 |
|- ( y = v -> ( [ v / y ] ph -> ph ) ) |
| 20 |
19
|
imdistanri |
|- ( ( [ v / y ] ph /\ y = v ) -> ( ph /\ y = v ) ) |
| 21 |
18 20
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( ph /\ y = v ) ). |
| 22 |
|
simpl |
|- ( ( ph /\ y = v ) -> ph ) |
| 23 |
21 22
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ph ). |
| 24 |
|
pm3.2 |
|- ( ( x = u /\ y = v ) -> ( ph -> ( ( x = u /\ y = v ) /\ ph ) ) ) |
| 25 |
3 23 24
|
e11 |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( ( x = u /\ y = v ) /\ ph ) ). |
| 26 |
25
|
in1 |
|- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) -> ( ( x = u /\ y = v ) /\ ph ) ) |
| 27 |
|
idn1 |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( ( x = u /\ y = v ) /\ ph ) ). |
| 28 |
|
simpl |
|- ( ( ( x = u /\ y = v ) /\ ph ) -> ( x = u /\ y = v ) ) |
| 29 |
27 28
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( x = u /\ y = v ) ). |
| 30 |
29 4
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. x = u ). |
| 31 |
29 15
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. y = v ). |
| 32 |
|
simpr |
|- ( ( ( x = u /\ y = v ) /\ ph ) -> ph ) |
| 33 |
27 32
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. ph ). |
| 34 |
|
pm3.21 |
|- ( y = v -> ( ph -> ( ph /\ y = v ) ) ) |
| 35 |
31 33 34
|
e11 |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( ph /\ y = v ) ). |
| 36 |
|
sbequ1 |
|- ( y = v -> ( ph -> [ v / y ] ph ) ) |
| 37 |
36
|
imdistanri |
|- ( ( ph /\ y = v ) -> ( [ v / y ] ph /\ y = v ) ) |
| 38 |
35 37
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( [ v / y ] ph /\ y = v ) ). |
| 39 |
|
simpl |
|- ( ( [ v / y ] ph /\ y = v ) -> [ v / y ] ph ) |
| 40 |
38 39
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. [ v / y ] ph ). |
| 41 |
|
pm3.21 |
|- ( x = u -> ( [ v / y ] ph -> ( [ v / y ] ph /\ x = u ) ) ) |
| 42 |
30 40 41
|
e11 |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( [ v / y ] ph /\ x = u ) ). |
| 43 |
|
sbequ1 |
|- ( x = u -> ( [ v / y ] ph -> [ u / x ] [ v / y ] ph ) ) |
| 44 |
43
|
imdistanri |
|- ( ( [ v / y ] ph /\ x = u ) -> ( [ u / x ] [ v / y ] ph /\ x = u ) ) |
| 45 |
42 44
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( [ u / x ] [ v / y ] ph /\ x = u ) ). |
| 46 |
|
simpl |
|- ( ( [ u / x ] [ v / y ] ph /\ x = u ) -> [ u / x ] [ v / y ] ph ) |
| 47 |
45 46
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. [ u / x ] [ v / y ] ph ). |
| 48 |
|
pm3.2 |
|- ( ( x = u /\ y = v ) -> ( [ u / x ] [ v / y ] ph -> ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ) ) |
| 49 |
29 47 48
|
e11 |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ). |
| 50 |
49
|
in1 |
|- ( ( ( x = u /\ y = v ) /\ ph ) -> ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ) |
| 51 |
26 50
|
impbii |
|- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) <-> ( ( x = u /\ y = v ) /\ ph ) ) |