This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed form of hbn . hbnt is another closed form of hbn . (Contributed by Alan Sare, 8-Feb-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hbntal | |- ( A. x ( ph -> A. x ph ) -> A. x ( -. ph -> A. x -. ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hba1 | |- ( A. x ( ph -> A. x ph ) -> A. x A. x ( ph -> A. x ph ) ) |
|
| 2 | axc7 | |- ( -. A. x -. A. x ph -> ph ) |
|
| 3 | 2 | con1i | |- ( -. ph -> A. x -. A. x ph ) |
| 4 | con3 | |- ( ( ph -> A. x ph ) -> ( -. A. x ph -> -. ph ) ) |
|
| 5 | 4 | al2imi | |- ( A. x ( ph -> A. x ph ) -> ( A. x -. A. x ph -> A. x -. ph ) ) |
| 6 | 3 5 | syl5 | |- ( A. x ( ph -> A. x ph ) -> ( -. ph -> A. x -. ph ) ) |
| 7 | 6 | alimi | |- ( A. x A. x ( ph -> A. x ph ) -> A. x ( -. ph -> A. x -. ph ) ) |
| 8 | 1 7 | syl | |- ( A. x ( ph -> A. x ph ) -> A. x ( -. ph -> A. x -. ph ) ) |