This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for 1wlkd . (Contributed by AV, 22-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1wlkd.p | |- P = <" X Y "> |
|
| 1wlkd.f | |- F = <" J "> |
||
| 1wlkd.x | |- ( ph -> X e. V ) |
||
| 1wlkd.y | |- ( ph -> Y e. V ) |
||
| Assertion | 1wlkdlem1 | |- ( ph -> P : ( 0 ... ( # ` F ) ) --> V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1wlkd.p | |- P = <" X Y "> |
|
| 2 | 1wlkd.f | |- F = <" J "> |
|
| 3 | 1wlkd.x | |- ( ph -> X e. V ) |
|
| 4 | 1wlkd.y | |- ( ph -> Y e. V ) |
|
| 5 | 3 4 | s2cld | |- ( ph -> <" X Y "> e. Word V ) |
| 6 | wrdf | |- ( <" X Y "> e. Word V -> <" X Y "> : ( 0 ..^ ( # ` <" X Y "> ) ) --> V ) |
|
| 7 | 1z | |- 1 e. ZZ |
|
| 8 | fzval3 | |- ( 1 e. ZZ -> ( 0 ... 1 ) = ( 0 ..^ ( 1 + 1 ) ) ) |
|
| 9 | 7 8 | ax-mp | |- ( 0 ... 1 ) = ( 0 ..^ ( 1 + 1 ) ) |
| 10 | 2 | fveq2i | |- ( # ` F ) = ( # ` <" J "> ) |
| 11 | s1len | |- ( # ` <" J "> ) = 1 |
|
| 12 | 10 11 | eqtri | |- ( # ` F ) = 1 |
| 13 | 12 | oveq2i | |- ( 0 ... ( # ` F ) ) = ( 0 ... 1 ) |
| 14 | s2len | |- ( # ` <" X Y "> ) = 2 |
|
| 15 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 16 | 14 15 | eqtri | |- ( # ` <" X Y "> ) = ( 1 + 1 ) |
| 17 | 16 | oveq2i | |- ( 0 ..^ ( # ` <" X Y "> ) ) = ( 0 ..^ ( 1 + 1 ) ) |
| 18 | 9 13 17 | 3eqtr4i | |- ( 0 ... ( # ` F ) ) = ( 0 ..^ ( # ` <" X Y "> ) ) |
| 19 | 18 | a1i | |- ( <" X Y "> e. Word V -> ( 0 ... ( # ` F ) ) = ( 0 ..^ ( # ` <" X Y "> ) ) ) |
| 20 | 19 | feq2d | |- ( <" X Y "> e. Word V -> ( <" X Y "> : ( 0 ... ( # ` F ) ) --> V <-> <" X Y "> : ( 0 ..^ ( # ` <" X Y "> ) ) --> V ) ) |
| 21 | 6 20 | mpbird | |- ( <" X Y "> e. Word V -> <" X Y "> : ( 0 ... ( # ` F ) ) --> V ) |
| 22 | 5 21 | syl | |- ( ph -> <" X Y "> : ( 0 ... ( # ` F ) ) --> V ) |
| 23 | 1 | feq1i | |- ( P : ( 0 ... ( # ` F ) ) --> V <-> <" X Y "> : ( 0 ... ( # ` F ) ) --> V ) |
| 24 | 22 23 | sylibr | |- ( ph -> P : ( 0 ... ( # ` F ) ) --> V ) |