This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for 1pthd . (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 22-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1wlkd.p | |- P = <" X Y "> |
|
| 1wlkd.f | |- F = <" J "> |
||
| Assertion | 1pthdlem1 | |- Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1wlkd.p | |- P = <" X Y "> |
|
| 2 | 1wlkd.f | |- F = <" J "> |
|
| 3 | fun0 | |- Fun (/) |
|
| 4 | 2 | fveq2i | |- ( # ` F ) = ( # ` <" J "> ) |
| 5 | s1len | |- ( # ` <" J "> ) = 1 |
|
| 6 | 4 5 | eqtri | |- ( # ` F ) = 1 |
| 7 | 6 | oveq2i | |- ( 1 ..^ ( # ` F ) ) = ( 1 ..^ 1 ) |
| 8 | fzo0 | |- ( 1 ..^ 1 ) = (/) |
|
| 9 | 7 8 | eqtri | |- ( 1 ..^ ( # ` F ) ) = (/) |
| 10 | 9 | reseq2i | |- ( P |` ( 1 ..^ ( # ` F ) ) ) = ( P |` (/) ) |
| 11 | res0 | |- ( P |` (/) ) = (/) |
|
| 12 | 10 11 | eqtri | |- ( P |` ( 1 ..^ ( # ` F ) ) ) = (/) |
| 13 | 12 | cnveqi | |- `' ( P |` ( 1 ..^ ( # ` F ) ) ) = `' (/) |
| 14 | cnv0 | |- `' (/) = (/) |
|
| 15 | 13 14 | eqtri | |- `' ( P |` ( 1 ..^ ( # ` F ) ) ) = (/) |
| 16 | 15 | funeqi | |- ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) <-> Fun (/) ) |
| 17 | 3 16 | mpbir | |- Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) |