This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for 1pthd . (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 22-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1wlkd.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 | |
| 1wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 ”〉 | ||
| Assertion | 1pthdlem1 | ⊢ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1wlkd.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 | |
| 2 | 1wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 ”〉 | |
| 3 | fun0 | ⊢ Fun ∅ | |
| 4 | 2 | fveq2i | ⊢ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 〈“ 𝐽 ”〉 ) |
| 5 | s1len | ⊢ ( ♯ ‘ 〈“ 𝐽 ”〉 ) = 1 | |
| 6 | 4 5 | eqtri | ⊢ ( ♯ ‘ 𝐹 ) = 1 |
| 7 | 6 | oveq2i | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ( 1 ..^ 1 ) |
| 8 | fzo0 | ⊢ ( 1 ..^ 1 ) = ∅ | |
| 9 | 7 8 | eqtri | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ∅ |
| 10 | 9 | reseq2i | ⊢ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( 𝑃 ↾ ∅ ) |
| 11 | res0 | ⊢ ( 𝑃 ↾ ∅ ) = ∅ | |
| 12 | 10 11 | eqtri | ⊢ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ∅ |
| 13 | 12 | cnveqi | ⊢ ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ◡ ∅ |
| 14 | cnv0 | ⊢ ◡ ∅ = ∅ | |
| 15 | 13 14 | eqtri | ⊢ ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ∅ |
| 16 | 15 | funeqi | ⊢ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ Fun ∅ ) |
| 17 | 3 16 | mpbir | ⊢ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |