This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by Alexander van der Vekens, 3-Dec-2017) (Revised by AV, 22-Jan-2021) (Revised by AV, 23-Mar-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1wlkd.p | |- P = <" X Y "> |
|
| 1wlkd.f | |- F = <" J "> |
||
| 1wlkd.x | |- ( ph -> X e. V ) |
||
| 1wlkd.y | |- ( ph -> Y e. V ) |
||
| 1wlkd.l | |- ( ( ph /\ X = Y ) -> ( I ` J ) = { X } ) |
||
| 1wlkd.j | |- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( I ` J ) ) |
||
| 1wlkd.v | |- V = ( Vtx ` G ) |
||
| 1wlkd.i | |- I = ( iEdg ` G ) |
||
| Assertion | 1pthd | |- ( ph -> F ( Paths ` G ) P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1wlkd.p | |- P = <" X Y "> |
|
| 2 | 1wlkd.f | |- F = <" J "> |
|
| 3 | 1wlkd.x | |- ( ph -> X e. V ) |
|
| 4 | 1wlkd.y | |- ( ph -> Y e. V ) |
|
| 5 | 1wlkd.l | |- ( ( ph /\ X = Y ) -> ( I ` J ) = { X } ) |
|
| 6 | 1wlkd.j | |- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( I ` J ) ) |
|
| 7 | 1wlkd.v | |- V = ( Vtx ` G ) |
|
| 8 | 1wlkd.i | |- I = ( iEdg ` G ) |
|
| 9 | 1 2 3 4 5 6 7 8 | 1trld | |- ( ph -> F ( Trails ` G ) P ) |
| 10 | simpr | |- ( ( ph /\ F ( Trails ` G ) P ) -> F ( Trails ` G ) P ) |
|
| 11 | 1 2 | 1pthdlem1 | |- Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) |
| 12 | 11 | a1i | |- ( ( ph /\ F ( Trails ` G ) P ) -> Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) |
| 13 | 1 2 | 1pthdlem2 | |- ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) |
| 14 | 13 | a1i | |- ( ( ph /\ F ( Trails ` G ) P ) -> ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) |
| 15 | ispth | |- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
|
| 16 | 10 12 14 15 | syl3anbrc | |- ( ( ph /\ F ( Trails ` G ) P ) -> F ( Paths ` G ) P ) |
| 17 | 9 16 | mpdan | |- ( ph -> F ( Paths ` G ) P ) |