This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple pseudograph with (at least) one vertex and one edge (a loop). (Contributed by AV, 5-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uspgr1v1eop | |- ( ( V e. W /\ A e. X /\ B e. V ) -> <. V , { <. A , { B } >. } >. e. USPGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 | |- { B } = { B , B } |
|
| 2 | 1 | opeq2i | |- <. A , { B } >. = <. A , { B , B } >. |
| 3 | 2 | sneqi | |- { <. A , { B } >. } = { <. A , { B , B } >. } |
| 4 | 3 | opeq2i | |- <. V , { <. A , { B } >. } >. = <. V , { <. A , { B , B } >. } >. |
| 5 | 3simpa | |- ( ( V e. W /\ A e. X /\ B e. V ) -> ( V e. W /\ A e. X ) ) |
|
| 6 | id | |- ( B e. V -> B e. V ) |
|
| 7 | 6 | ancri | |- ( B e. V -> ( B e. V /\ B e. V ) ) |
| 8 | 7 | 3ad2ant3 | |- ( ( V e. W /\ A e. X /\ B e. V ) -> ( B e. V /\ B e. V ) ) |
| 9 | uspgr1eop | |- ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ B e. V ) ) -> <. V , { <. A , { B , B } >. } >. e. USPGraph ) |
|
| 10 | 5 8 9 | syl2anc | |- ( ( V e. W /\ A e. X /\ B e. V ) -> <. V , { <. A , { B , B } >. } >. e. USPGraph ) |
| 11 | 4 10 | eqeltrid | |- ( ( V e. W /\ A e. X /\ B e. V ) -> <. V , { <. A , { B } >. } >. e. USPGraph ) |