This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a finite monotonic 1-based sequence of primes. Every positive integer has a unique prime factorization. Theorem 1.10 in ApostolNT p. 17. This is Metamath 100 proof #80. (Contributed by Paul Chapman, 17-Nov-2012) (Revised by Mario Carneiro, 30-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1arith.1 | |- M = ( n e. NN |-> ( p e. Prime |-> ( p pCnt n ) ) ) |
|
| 1arith.2 | |- R = { e e. ( NN0 ^m Prime ) | ( `' e " NN ) e. Fin } |
||
| Assertion | 1arith2 | |- A. z e. NN E! g e. R ( M ` z ) = g |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1arith.1 | |- M = ( n e. NN |-> ( p e. Prime |-> ( p pCnt n ) ) ) |
|
| 2 | 1arith.2 | |- R = { e e. ( NN0 ^m Prime ) | ( `' e " NN ) e. Fin } |
|
| 3 | 1 2 | 1arith | |- M : NN -1-1-onto-> R |
| 4 | f1ocnv | |- ( M : NN -1-1-onto-> R -> `' M : R -1-1-onto-> NN ) |
|
| 5 | 3 4 | ax-mp | |- `' M : R -1-1-onto-> NN |
| 6 | f1ofveu | |- ( ( `' M : R -1-1-onto-> NN /\ z e. NN ) -> E! g e. R ( `' M ` g ) = z ) |
|
| 7 | 5 6 | mpan | |- ( z e. NN -> E! g e. R ( `' M ` g ) = z ) |
| 8 | f1ocnvfvb | |- ( ( M : NN -1-1-onto-> R /\ z e. NN /\ g e. R ) -> ( ( M ` z ) = g <-> ( `' M ` g ) = z ) ) |
|
| 9 | 3 8 | mp3an1 | |- ( ( z e. NN /\ g e. R ) -> ( ( M ` z ) = g <-> ( `' M ` g ) = z ) ) |
| 10 | 9 | reubidva | |- ( z e. NN -> ( E! g e. R ( M ` z ) = g <-> E! g e. R ( `' M ` g ) = z ) ) |
| 11 | 7 10 | mpbird | |- ( z e. NN -> E! g e. R ( M ` z ) = g ) |
| 12 | 11 | rgen | |- A. z e. NN E! g e. R ( M ` z ) = g |