This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a finite monotonic 1-based sequence of primes. Every positive integer has a unique prime factorization. Theorem 1.10 in ApostolNT p. 17. This is Metamath 100 proof #80. (Contributed by Paul Chapman, 17-Nov-2012) (Revised by Mario Carneiro, 30-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1arith.1 | ⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ) | |
| 1arith.2 | ⊢ 𝑅 = { 𝑒 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑒 “ ℕ ) ∈ Fin } | ||
| Assertion | 1arith2 | ⊢ ∀ 𝑧 ∈ ℕ ∃! 𝑔 ∈ 𝑅 ( 𝑀 ‘ 𝑧 ) = 𝑔 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1arith.1 | ⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ) | |
| 2 | 1arith.2 | ⊢ 𝑅 = { 𝑒 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑒 “ ℕ ) ∈ Fin } | |
| 3 | 1 2 | 1arith | ⊢ 𝑀 : ℕ –1-1-onto→ 𝑅 |
| 4 | f1ocnv | ⊢ ( 𝑀 : ℕ –1-1-onto→ 𝑅 → ◡ 𝑀 : 𝑅 –1-1-onto→ ℕ ) | |
| 5 | 3 4 | ax-mp | ⊢ ◡ 𝑀 : 𝑅 –1-1-onto→ ℕ |
| 6 | f1ofveu | ⊢ ( ( ◡ 𝑀 : 𝑅 –1-1-onto→ ℕ ∧ 𝑧 ∈ ℕ ) → ∃! 𝑔 ∈ 𝑅 ( ◡ 𝑀 ‘ 𝑔 ) = 𝑧 ) | |
| 7 | 5 6 | mpan | ⊢ ( 𝑧 ∈ ℕ → ∃! 𝑔 ∈ 𝑅 ( ◡ 𝑀 ‘ 𝑔 ) = 𝑧 ) |
| 8 | f1ocnvfvb | ⊢ ( ( 𝑀 : ℕ –1-1-onto→ 𝑅 ∧ 𝑧 ∈ ℕ ∧ 𝑔 ∈ 𝑅 ) → ( ( 𝑀 ‘ 𝑧 ) = 𝑔 ↔ ( ◡ 𝑀 ‘ 𝑔 ) = 𝑧 ) ) | |
| 9 | 3 8 | mp3an1 | ⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑔 ∈ 𝑅 ) → ( ( 𝑀 ‘ 𝑧 ) = 𝑔 ↔ ( ◡ 𝑀 ‘ 𝑔 ) = 𝑧 ) ) |
| 10 | 9 | reubidva | ⊢ ( 𝑧 ∈ ℕ → ( ∃! 𝑔 ∈ 𝑅 ( 𝑀 ‘ 𝑧 ) = 𝑔 ↔ ∃! 𝑔 ∈ 𝑅 ( ◡ 𝑀 ‘ 𝑔 ) = 𝑧 ) ) |
| 11 | 7 10 | mpbird | ⊢ ( 𝑧 ∈ ℕ → ∃! 𝑔 ∈ 𝑅 ( 𝑀 ‘ 𝑧 ) = 𝑔 ) |
| 12 | 11 | rgen | ⊢ ∀ 𝑧 ∈ ℕ ∃! 𝑔 ∈ 𝑅 ( 𝑀 ‘ 𝑧 ) = 𝑔 |