This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uni0b | |- ( U. A = (/) <-> A C_ { (/) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn | |- ( x e. { (/) } <-> x = (/) ) |
|
| 2 | 1 | ralbii | |- ( A. x e. A x e. { (/) } <-> A. x e. A x = (/) ) |
| 3 | dfss3 | |- ( A C_ { (/) } <-> A. x e. A x e. { (/) } ) |
|
| 4 | neq0 | |- ( -. U. A = (/) <-> E. y y e. U. A ) |
|
| 5 | rexcom4 | |- ( E. x e. A E. y y e. x <-> E. y E. x e. A y e. x ) |
|
| 6 | neq0 | |- ( -. x = (/) <-> E. y y e. x ) |
|
| 7 | 6 | rexbii | |- ( E. x e. A -. x = (/) <-> E. x e. A E. y y e. x ) |
| 8 | eluni2 | |- ( y e. U. A <-> E. x e. A y e. x ) |
|
| 9 | 8 | exbii | |- ( E. y y e. U. A <-> E. y E. x e. A y e. x ) |
| 10 | 5 7 9 | 3bitr4ri | |- ( E. y y e. U. A <-> E. x e. A -. x = (/) ) |
| 11 | rexnal | |- ( E. x e. A -. x = (/) <-> -. A. x e. A x = (/) ) |
|
| 12 | 4 10 11 | 3bitri | |- ( -. U. A = (/) <-> -. A. x e. A x = (/) ) |
| 13 | 12 | con4bii | |- ( U. A = (/) <-> A. x e. A x = (/) ) |
| 14 | 2 3 13 | 3bitr4ri | |- ( U. A = (/) <-> A C_ { (/) } ) |