This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variant of Zorn's lemma zorn in which (/) , the union of the empty chain, is not required to be an element of A . (Contributed by Jeff Madsen, 5-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zornn0.1 | ⊢ 𝐴 ∈ V | |
| Assertion | zornn0 | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zornn0.1 | ⊢ 𝐴 ∈ V | |
| 2 | numth3 | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ dom card ) | |
| 3 | 1 2 | ax-mp | ⊢ 𝐴 ∈ dom card |
| 4 | zornn0g | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) | |
| 5 | 3 4 | mp3an1 | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |