This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Self-referential expression for the Z/nZ structure. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znval2.s | |- S = ( RSpan ` ZZring ) |
|
| znval2.u | |- U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) |
||
| znval2.y | |- Y = ( Z/nZ ` N ) |
||
| znval2.l | |- .<_ = ( le ` Y ) |
||
| Assertion | znval2 | |- ( N e. NN0 -> Y = ( U sSet <. ( le ` ndx ) , .<_ >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znval2.s | |- S = ( RSpan ` ZZring ) |
|
| 2 | znval2.u | |- U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) |
|
| 3 | znval2.y | |- Y = ( Z/nZ ` N ) |
|
| 4 | znval2.l | |- .<_ = ( le ` Y ) |
|
| 5 | eqid | |- ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) = ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) |
|
| 6 | eqid | |- if ( N = 0 , ZZ , ( 0 ..^ N ) ) = if ( N = 0 , ZZ , ( 0 ..^ N ) ) |
|
| 7 | eqid | |- ( ( ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) o. <_ ) o. `' ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) ) = ( ( ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) o. <_ ) o. `' ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) ) |
|
| 8 | 1 2 3 5 6 7 | znval | |- ( N e. NN0 -> Y = ( U sSet <. ( le ` ndx ) , ( ( ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) o. <_ ) o. `' ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) ) >. ) ) |
| 9 | 1 2 3 5 6 4 | znle | |- ( N e. NN0 -> .<_ = ( ( ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) o. <_ ) o. `' ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) ) ) |
| 10 | 9 | opeq2d | |- ( N e. NN0 -> <. ( le ` ndx ) , .<_ >. = <. ( le ` ndx ) , ( ( ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) o. <_ ) o. `' ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) ) >. ) |
| 11 | 10 | oveq2d | |- ( N e. NN0 -> ( U sSet <. ( le ` ndx ) , .<_ >. ) = ( U sSet <. ( le ` ndx ) , ( ( ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) o. <_ ) o. `' ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) ) >. ) ) |
| 12 | 8 11 | eqtr4d | |- ( N e. NN0 -> Y = ( U sSet <. ( le ` ndx ) , .<_ >. ) ) |