This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of a nonzero integer is a positive integer. (Contributed by Thierry Arnoux, 2-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znsqcld.1 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| znsqcld.2 | ⊢ ( 𝜑 → 𝑁 ≠ 0 ) | ||
| Assertion | znsqcld | ⊢ ( 𝜑 → ( 𝑁 ↑ 2 ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znsqcld.1 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 2 | znsqcld.2 | ⊢ ( 𝜑 → 𝑁 ≠ 0 ) | |
| 3 | 1 | zcnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 4 | 2z | ⊢ 2 ∈ ℤ | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 6 | 3 2 5 | expne0d | ⊢ ( 𝜑 → ( 𝑁 ↑ 2 ) ≠ 0 ) |
| 7 | 6 | neneqd | ⊢ ( 𝜑 → ¬ ( 𝑁 ↑ 2 ) = 0 ) |
| 8 | zsqcl2 | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ↑ 2 ) ∈ ℕ0 ) | |
| 9 | 1 8 | syl | ⊢ ( 𝜑 → ( 𝑁 ↑ 2 ) ∈ ℕ0 ) |
| 10 | elnn0 | ⊢ ( ( 𝑁 ↑ 2 ) ∈ ℕ0 ↔ ( ( 𝑁 ↑ 2 ) ∈ ℕ ∨ ( 𝑁 ↑ 2 ) = 0 ) ) | |
| 11 | 9 10 | sylib | ⊢ ( 𝜑 → ( ( 𝑁 ↑ 2 ) ∈ ℕ ∨ ( 𝑁 ↑ 2 ) = 0 ) ) |
| 12 | 11 | orcomd | ⊢ ( 𝜑 → ( ( 𝑁 ↑ 2 ) = 0 ∨ ( 𝑁 ↑ 2 ) ∈ ℕ ) ) |
| 13 | 12 | ord | ⊢ ( 𝜑 → ( ¬ ( 𝑁 ↑ 2 ) = 0 → ( 𝑁 ↑ 2 ) ∈ ℕ ) ) |
| 14 | 7 13 | mpd | ⊢ ( 𝜑 → ( 𝑁 ↑ 2 ) ∈ ℕ ) |