This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of a nonzero integer is a positive integer. (Contributed by Thierry Arnoux, 2-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znsqcld.1 | |- ( ph -> N e. ZZ ) |
|
| znsqcld.2 | |- ( ph -> N =/= 0 ) |
||
| Assertion | znsqcld | |- ( ph -> ( N ^ 2 ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znsqcld.1 | |- ( ph -> N e. ZZ ) |
|
| 2 | znsqcld.2 | |- ( ph -> N =/= 0 ) |
|
| 3 | 1 | zcnd | |- ( ph -> N e. CC ) |
| 4 | 2z | |- 2 e. ZZ |
|
| 5 | 4 | a1i | |- ( ph -> 2 e. ZZ ) |
| 6 | 3 2 5 | expne0d | |- ( ph -> ( N ^ 2 ) =/= 0 ) |
| 7 | 6 | neneqd | |- ( ph -> -. ( N ^ 2 ) = 0 ) |
| 8 | zsqcl2 | |- ( N e. ZZ -> ( N ^ 2 ) e. NN0 ) |
|
| 9 | 1 8 | syl | |- ( ph -> ( N ^ 2 ) e. NN0 ) |
| 10 | elnn0 | |- ( ( N ^ 2 ) e. NN0 <-> ( ( N ^ 2 ) e. NN \/ ( N ^ 2 ) = 0 ) ) |
|
| 11 | 9 10 | sylib | |- ( ph -> ( ( N ^ 2 ) e. NN \/ ( N ^ 2 ) = 0 ) ) |
| 12 | 11 | orcomd | |- ( ph -> ( ( N ^ 2 ) = 0 \/ ( N ^ 2 ) e. NN ) ) |
| 13 | 12 | ord | |- ( ph -> ( -. ( N ^ 2 ) = 0 -> ( N ^ 2 ) e. NN ) ) |
| 14 | 7 13 | mpd | |- ( ph -> ( N ^ 2 ) e. NN ) |