This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of Replacement using class abstractions. (Contributed by NM, 26-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zfrep4.1 | ⊢ { 𝑥 ∣ 𝜑 } ∈ V | |
| zfrep4.2 | ⊢ ( 𝜑 → ∃ 𝑧 ∀ 𝑦 ( 𝜓 → 𝑦 = 𝑧 ) ) | ||
| Assertion | zfrep4 | ⊢ { 𝑦 ∣ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) } ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfrep4.1 | ⊢ { 𝑥 ∣ 𝜑 } ∈ V | |
| 2 | zfrep4.2 | ⊢ ( 𝜑 → ∃ 𝑧 ∀ 𝑦 ( 𝜓 → 𝑦 = 𝑧 ) ) | |
| 3 | abid | ⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) | |
| 4 | 3 | anbi1i | ⊢ ( ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜓 ) ) |
| 5 | 4 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |
| 6 | 5 | abbii | ⊢ { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝜓 ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) } |
| 7 | nfab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∣ 𝜑 } | |
| 8 | 3 2 | sylbi | ⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } → ∃ 𝑧 ∀ 𝑦 ( 𝜓 → 𝑦 = 𝑧 ) ) |
| 9 | 7 1 8 | zfrepclf | ⊢ ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝜓 ) ) |
| 10 | eqabb | ⊢ ( 𝑧 = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝜓 ) } ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝜓 ) ) ) | |
| 11 | 10 | exbii | ⊢ ( ∃ 𝑧 𝑧 = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝜓 ) } ↔ ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝜓 ) ) ) |
| 12 | 9 11 | mpbir | ⊢ ∃ 𝑧 𝑧 = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝜓 ) } |
| 13 | 12 | issetri | ⊢ { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝜓 ) } ∈ V |
| 14 | 6 13 | eqeltrri | ⊢ { 𝑦 ∣ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) } ∈ V |