This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of Replacement using class abstractions. (Contributed by NM, 26-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zfrep4.1 | |- { x | ph } e. _V |
|
| zfrep4.2 | |- ( ph -> E. z A. y ( ps -> y = z ) ) |
||
| Assertion | zfrep4 | |- { y | E. x ( ph /\ ps ) } e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfrep4.1 | |- { x | ph } e. _V |
|
| 2 | zfrep4.2 | |- ( ph -> E. z A. y ( ps -> y = z ) ) |
|
| 3 | abid | |- ( x e. { x | ph } <-> ph ) |
|
| 4 | 3 | anbi1i | |- ( ( x e. { x | ph } /\ ps ) <-> ( ph /\ ps ) ) |
| 5 | 4 | exbii | |- ( E. x ( x e. { x | ph } /\ ps ) <-> E. x ( ph /\ ps ) ) |
| 6 | 5 | abbii | |- { y | E. x ( x e. { x | ph } /\ ps ) } = { y | E. x ( ph /\ ps ) } |
| 7 | nfab1 | |- F/_ x { x | ph } |
|
| 8 | 3 2 | sylbi | |- ( x e. { x | ph } -> E. z A. y ( ps -> y = z ) ) |
| 9 | 7 1 8 | zfrepclf | |- E. z A. y ( y e. z <-> E. x ( x e. { x | ph } /\ ps ) ) |
| 10 | eqabb | |- ( z = { y | E. x ( x e. { x | ph } /\ ps ) } <-> A. y ( y e. z <-> E. x ( x e. { x | ph } /\ ps ) ) ) |
|
| 11 | 10 | exbii | |- ( E. z z = { y | E. x ( x e. { x | ph } /\ ps ) } <-> E. z A. y ( y e. z <-> E. x ( x e. { x | ph } /\ ps ) ) ) |
| 12 | 9 11 | mpbir | |- E. z z = { y | E. x ( x e. { x | ph } /\ ps ) } |
| 13 | 12 | issetri | |- { y | E. x ( x e. { x | ph } /\ ps ) } e. _V |
| 14 | 6 13 | eqeltrri | |- { y | E. x ( ph /\ ps ) } e. _V |