This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A standard version of the Axiom of Infinity, using definitions to abbreviate. Axiom Inf of BellMachover p. 472. (See ax-inf2 for the unabbreviated version.) (Contributed by NM, 30-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfinf2 | ⊢ ∃ 𝑥 ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-inf2 | ⊢ ∃ 𝑥 ( ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) | |
| 2 | 0el | ⊢ ( ∅ ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) | |
| 3 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ∅ ∈ 𝑥 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) ) |
| 5 | sucel | ⊢ ( suc 𝑦 ∈ 𝑥 ↔ ∃ 𝑧 ∈ 𝑥 ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) | |
| 6 | df-rex | ⊢ ( ∃ 𝑧 ∈ 𝑥 ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) | |
| 7 | 5 6 | bitri | ⊢ ( suc 𝑦 ∈ 𝑥 ↔ ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) |
| 8 | 7 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) |
| 9 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) | |
| 10 | 8 9 | bitri | ⊢ ( ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) |
| 11 | 4 10 | anbi12i | ⊢ ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) ↔ ( ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) ) |
| 12 | 11 | exbii | ⊢ ( ∃ 𝑥 ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑥 ( ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) ) |
| 13 | 1 12 | mpbir | ⊢ ∃ 𝑥 ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) |