This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function with a domain of 2o . (Contributed by Jim Kingdon, 25-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnpr2o | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → { 〈 ∅ , 𝐴 〉 , 〈 1o , 𝐵 〉 } Fn 2o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 | ⊢ ∅ ∈ ω | |
| 2 | 1 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∅ ∈ ω ) |
| 3 | 1onn | ⊢ 1o ∈ ω | |
| 4 | 3 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 1o ∈ ω ) |
| 5 | simpl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐴 ∈ 𝑉 ) | |
| 6 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ 𝑊 ) | |
| 7 | 1n0 | ⊢ 1o ≠ ∅ | |
| 8 | 7 | necomi | ⊢ ∅ ≠ 1o |
| 9 | 8 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∅ ≠ 1o ) |
| 10 | fnprg | ⊢ ( ( ( ∅ ∈ ω ∧ 1o ∈ ω ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ∅ ≠ 1o ) → { 〈 ∅ , 𝐴 〉 , 〈 1o , 𝐵 〉 } Fn { ∅ , 1o } ) | |
| 11 | 2 4 5 6 9 10 | syl221anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → { 〈 ∅ , 𝐴 〉 , 〈 1o , 𝐵 〉 } Fn { ∅ , 1o } ) |
| 12 | df2o3 | ⊢ 2o = { ∅ , 1o } | |
| 13 | 12 | fneq2i | ⊢ ( { 〈 ∅ , 𝐴 〉 , 〈 1o , 𝐵 〉 } Fn 2o ↔ { 〈 ∅ , 𝐴 〉 , 〈 1o , 𝐵 〉 } Fn { ∅ , 1o } ) |
| 14 | 11 13 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → { 〈 ∅ , 𝐴 〉 , 〈 1o , 𝐵 〉 } Fn 2o ) |