This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by AV, 5-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnn0n0n1ge2b | ⊢ ( 𝑁 ∈ ℕ0* → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ 2 ≤ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 | ⊢ ( 𝑁 ∈ ℕ0* ↔ ( 𝑁 ∈ ℕ0 ∨ 𝑁 = +∞ ) ) | |
| 2 | nn0n0n1ge2b | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ 2 ≤ 𝑁 ) ) | |
| 3 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 4 | nn0nepnf | ⊢ ( 0 ∈ ℕ0 → 0 ≠ +∞ ) | |
| 5 | 3 4 | ax-mp | ⊢ 0 ≠ +∞ |
| 6 | 5 | necomi | ⊢ +∞ ≠ 0 |
| 7 | neeq1 | ⊢ ( 𝑁 = +∞ → ( 𝑁 ≠ 0 ↔ +∞ ≠ 0 ) ) | |
| 8 | 6 7 | mpbiri | ⊢ ( 𝑁 = +∞ → 𝑁 ≠ 0 ) |
| 9 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 10 | nn0nepnf | ⊢ ( 1 ∈ ℕ0 → 1 ≠ +∞ ) | |
| 11 | 9 10 | ax-mp | ⊢ 1 ≠ +∞ |
| 12 | 11 | necomi | ⊢ +∞ ≠ 1 |
| 13 | neeq1 | ⊢ ( 𝑁 = +∞ → ( 𝑁 ≠ 1 ↔ +∞ ≠ 1 ) ) | |
| 14 | 12 13 | mpbiri | ⊢ ( 𝑁 = +∞ → 𝑁 ≠ 1 ) |
| 15 | 8 14 | jca | ⊢ ( 𝑁 = +∞ → ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ) |
| 16 | 2re | ⊢ 2 ∈ ℝ | |
| 17 | 16 | rexri | ⊢ 2 ∈ ℝ* |
| 18 | pnfge | ⊢ ( 2 ∈ ℝ* → 2 ≤ +∞ ) | |
| 19 | 17 18 | ax-mp | ⊢ 2 ≤ +∞ |
| 20 | breq2 | ⊢ ( 𝑁 = +∞ → ( 2 ≤ 𝑁 ↔ 2 ≤ +∞ ) ) | |
| 21 | 19 20 | mpbiri | ⊢ ( 𝑁 = +∞ → 2 ≤ 𝑁 ) |
| 22 | 15 21 | 2thd | ⊢ ( 𝑁 = +∞ → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ 2 ≤ 𝑁 ) ) |
| 23 | 2 22 | jaoi | ⊢ ( ( 𝑁 ∈ ℕ0 ∨ 𝑁 = +∞ ) → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ 2 ≤ 𝑁 ) ) |
| 24 | 1 23 | sylbi | ⊢ ( 𝑁 ∈ ℕ0* → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ 2 ≤ 𝑁 ) ) |