This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by AV, 5-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnn0n0n1ge2b | |- ( N e. NN0* -> ( ( N =/= 0 /\ N =/= 1 ) <-> 2 <_ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 | |- ( N e. NN0* <-> ( N e. NN0 \/ N = +oo ) ) |
|
| 2 | nn0n0n1ge2b | |- ( N e. NN0 -> ( ( N =/= 0 /\ N =/= 1 ) <-> 2 <_ N ) ) |
|
| 3 | 0nn0 | |- 0 e. NN0 |
|
| 4 | nn0nepnf | |- ( 0 e. NN0 -> 0 =/= +oo ) |
|
| 5 | 3 4 | ax-mp | |- 0 =/= +oo |
| 6 | 5 | necomi | |- +oo =/= 0 |
| 7 | neeq1 | |- ( N = +oo -> ( N =/= 0 <-> +oo =/= 0 ) ) |
|
| 8 | 6 7 | mpbiri | |- ( N = +oo -> N =/= 0 ) |
| 9 | 1nn0 | |- 1 e. NN0 |
|
| 10 | nn0nepnf | |- ( 1 e. NN0 -> 1 =/= +oo ) |
|
| 11 | 9 10 | ax-mp | |- 1 =/= +oo |
| 12 | 11 | necomi | |- +oo =/= 1 |
| 13 | neeq1 | |- ( N = +oo -> ( N =/= 1 <-> +oo =/= 1 ) ) |
|
| 14 | 12 13 | mpbiri | |- ( N = +oo -> N =/= 1 ) |
| 15 | 8 14 | jca | |- ( N = +oo -> ( N =/= 0 /\ N =/= 1 ) ) |
| 16 | 2re | |- 2 e. RR |
|
| 17 | 16 | rexri | |- 2 e. RR* |
| 18 | pnfge | |- ( 2 e. RR* -> 2 <_ +oo ) |
|
| 19 | 17 18 | ax-mp | |- 2 <_ +oo |
| 20 | breq2 | |- ( N = +oo -> ( 2 <_ N <-> 2 <_ +oo ) ) |
|
| 21 | 19 20 | mpbiri | |- ( N = +oo -> 2 <_ N ) |
| 22 | 15 21 | 2thd | |- ( N = +oo -> ( ( N =/= 0 /\ N =/= 1 ) <-> 2 <_ N ) ) |
| 23 | 2 22 | jaoi | |- ( ( N e. NN0 \/ N = +oo ) -> ( ( N =/= 0 /\ N =/= 1 ) <-> 2 <_ N ) ) |
| 24 | 1 23 | sylbi | |- ( N e. NN0* -> ( ( N =/= 0 /\ N =/= 1 ) <-> 2 <_ N ) ) |