This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property deduction for an extended metric space. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xmspropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| xmspropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| xmspropd.3 | ⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) ) | ||
| xmspropd.4 | ⊢ ( 𝜑 → ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐿 ) ) | ||
| Assertion | xmspropd | ⊢ ( 𝜑 → ( 𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmspropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | xmspropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | xmspropd.3 | ⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) ) | |
| 4 | xmspropd.4 | ⊢ ( 𝜑 → ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐿 ) ) | |
| 5 | 1 2 | eqtr3d | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
| 6 | 5 4 | tpspropd | ⊢ ( 𝜑 → ( 𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp ) ) |
| 7 | 1 | sqxpeqd | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 8 | 7 | reseq2d | ⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
| 9 | 3 8 | eqtr3d | ⊢ ( 𝜑 → ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
| 10 | 2 | sqxpeqd | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) |
| 11 | 10 | reseq2d | ⊢ ( 𝜑 → ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) |
| 12 | 9 11 | eqtr3d | ⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) |
| 13 | 12 | fveq2d | ⊢ ( 𝜑 → ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) |
| 14 | 4 13 | eqeq12d | ⊢ ( 𝜑 → ( ( TopOpen ‘ 𝐾 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ↔ ( TopOpen ‘ 𝐿 ) = ( MetOpen ‘ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) ) |
| 15 | 6 14 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐾 ∈ TopSp ∧ ( TopOpen ‘ 𝐾 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) ↔ ( 𝐿 ∈ TopSp ∧ ( TopOpen ‘ 𝐿 ) = ( MetOpen ‘ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) ) ) |
| 16 | eqid | ⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) | |
| 17 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 18 | eqid | ⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) | |
| 19 | 16 17 18 | isxms | ⊢ ( 𝐾 ∈ ∞MetSp ↔ ( 𝐾 ∈ TopSp ∧ ( TopOpen ‘ 𝐾 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) ) |
| 20 | eqid | ⊢ ( TopOpen ‘ 𝐿 ) = ( TopOpen ‘ 𝐿 ) | |
| 21 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 22 | eqid | ⊢ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) | |
| 23 | 20 21 22 | isxms | ⊢ ( 𝐿 ∈ ∞MetSp ↔ ( 𝐿 ∈ TopSp ∧ ( TopOpen ‘ 𝐿 ) = ( MetOpen ‘ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) ) |
| 24 | 15 19 23 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp ) ) |