This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006) (Revised by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tpspropd.1 | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) | |
| tpspropd.2 | ⊢ ( 𝜑 → ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐿 ) ) | ||
| Assertion | tpspropd | ⊢ ( 𝜑 → ( 𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpspropd.1 | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) | |
| 2 | tpspropd.2 | ⊢ ( 𝜑 → ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐿 ) ) | |
| 3 | 1 | fveq2d | ⊢ ( 𝜑 → ( TopOn ‘ ( Base ‘ 𝐾 ) ) = ( TopOn ‘ ( Base ‘ 𝐿 ) ) ) |
| 4 | 2 3 | eleq12d | ⊢ ( 𝜑 → ( ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ↔ ( TopOpen ‘ 𝐿 ) ∈ ( TopOn ‘ ( Base ‘ 𝐿 ) ) ) ) |
| 5 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 6 | eqid | ⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) | |
| 7 | 5 6 | istps | ⊢ ( 𝐾 ∈ TopSp ↔ ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
| 8 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 9 | eqid | ⊢ ( TopOpen ‘ 𝐿 ) = ( TopOpen ‘ 𝐿 ) | |
| 10 | 8 9 | istps | ⊢ ( 𝐿 ∈ TopSp ↔ ( TopOpen ‘ 𝐿 ) ∈ ( TopOn ‘ ( Base ‘ 𝐿 ) ) ) |
| 11 | 4 7 10 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp ) ) |