This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmettpos | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → tpos 𝐷 = 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetsym | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) | |
| 2 | 1 | 3expb | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) |
| 3 | 2 | ralrimivva | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) |
| 4 | xmetf | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 5 | ffn | ⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → 𝐷 Fn ( 𝑋 × 𝑋 ) ) | |
| 6 | tpossym | ⊢ ( 𝐷 Fn ( 𝑋 × 𝑋 ) → ( tpos 𝐷 = 𝐷 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) ) | |
| 7 | 4 5 6 | 3syl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( tpos 𝐷 = 𝐷 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) ) |
| 8 | 3 7 | mpbird | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → tpos 𝐷 = 𝐷 ) |