This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmettpos | |- ( D e. ( *Met ` X ) -> tpos D = D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetsym | |- ( ( D e. ( *Met ` X ) /\ x e. X /\ y e. X ) -> ( x D y ) = ( y D x ) ) |
|
| 2 | 1 | 3expb | |- ( ( D e. ( *Met ` X ) /\ ( x e. X /\ y e. X ) ) -> ( x D y ) = ( y D x ) ) |
| 3 | 2 | ralrimivva | |- ( D e. ( *Met ` X ) -> A. x e. X A. y e. X ( x D y ) = ( y D x ) ) |
| 4 | xmetf | |- ( D e. ( *Met ` X ) -> D : ( X X. X ) --> RR* ) |
|
| 5 | ffn | |- ( D : ( X X. X ) --> RR* -> D Fn ( X X. X ) ) |
|
| 6 | tpossym | |- ( D Fn ( X X. X ) -> ( tpos D = D <-> A. x e. X A. y e. X ( x D y ) = ( y D x ) ) ) |
|
| 7 | 4 5 6 | 3syl | |- ( D e. ( *Met ` X ) -> ( tpos D = D <-> A. x e. X A. y e. X ( x D y ) = ( y D x ) ) ) |
| 8 | 3 7 | mpbird | |- ( D e. ( *Met ` X ) -> tpos D = D ) |