This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak universe is closed under composition. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wun0.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| wunop.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | ||
| wunco.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) | ||
| Assertion | wunco | ⊢ ( 𝜑 → ( 𝐴 ∘ 𝐵 ) ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 2 | wunop.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
| 3 | wunco.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) | |
| 4 | 1 3 | wundm | ⊢ ( 𝜑 → dom 𝐵 ∈ 𝑈 ) |
| 5 | dmcoss | ⊢ dom ( 𝐴 ∘ 𝐵 ) ⊆ dom 𝐵 | |
| 6 | 5 | a1i | ⊢ ( 𝜑 → dom ( 𝐴 ∘ 𝐵 ) ⊆ dom 𝐵 ) |
| 7 | 1 4 6 | wunss | ⊢ ( 𝜑 → dom ( 𝐴 ∘ 𝐵 ) ∈ 𝑈 ) |
| 8 | 1 2 | wunrn | ⊢ ( 𝜑 → ran 𝐴 ∈ 𝑈 ) |
| 9 | rncoss | ⊢ ran ( 𝐴 ∘ 𝐵 ) ⊆ ran 𝐴 | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ran ( 𝐴 ∘ 𝐵 ) ⊆ ran 𝐴 ) |
| 11 | 1 8 10 | wunss | ⊢ ( 𝜑 → ran ( 𝐴 ∘ 𝐵 ) ∈ 𝑈 ) |
| 12 | 1 7 11 | wunxp | ⊢ ( 𝜑 → ( dom ( 𝐴 ∘ 𝐵 ) × ran ( 𝐴 ∘ 𝐵 ) ) ∈ 𝑈 ) |
| 13 | relco | ⊢ Rel ( 𝐴 ∘ 𝐵 ) | |
| 14 | relssdmrn | ⊢ ( Rel ( 𝐴 ∘ 𝐵 ) → ( 𝐴 ∘ 𝐵 ) ⊆ ( dom ( 𝐴 ∘ 𝐵 ) × ran ( 𝐴 ∘ 𝐵 ) ) ) | |
| 15 | 13 14 | mp1i | ⊢ ( 𝜑 → ( 𝐴 ∘ 𝐵 ) ⊆ ( dom ( 𝐴 ∘ 𝐵 ) × ran ( 𝐴 ∘ 𝐵 ) ) ) |
| 16 | 1 12 15 | wunss | ⊢ ( 𝜑 → ( 𝐴 ∘ 𝐵 ) ∈ 𝑈 ) |