This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak universe is closed under composition. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wun0.1 | |- ( ph -> U e. WUni ) |
|
| wunop.2 | |- ( ph -> A e. U ) |
||
| wunco.3 | |- ( ph -> B e. U ) |
||
| Assertion | wunco | |- ( ph -> ( A o. B ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | |- ( ph -> U e. WUni ) |
|
| 2 | wunop.2 | |- ( ph -> A e. U ) |
|
| 3 | wunco.3 | |- ( ph -> B e. U ) |
|
| 4 | 1 3 | wundm | |- ( ph -> dom B e. U ) |
| 5 | dmcoss | |- dom ( A o. B ) C_ dom B |
|
| 6 | 5 | a1i | |- ( ph -> dom ( A o. B ) C_ dom B ) |
| 7 | 1 4 6 | wunss | |- ( ph -> dom ( A o. B ) e. U ) |
| 8 | 1 2 | wunrn | |- ( ph -> ran A e. U ) |
| 9 | rncoss | |- ran ( A o. B ) C_ ran A |
|
| 10 | 9 | a1i | |- ( ph -> ran ( A o. B ) C_ ran A ) |
| 11 | 1 8 10 | wunss | |- ( ph -> ran ( A o. B ) e. U ) |
| 12 | 1 7 11 | wunxp | |- ( ph -> ( dom ( A o. B ) X. ran ( A o. B ) ) e. U ) |
| 13 | relco | |- Rel ( A o. B ) |
|
| 14 | relssdmrn | |- ( Rel ( A o. B ) -> ( A o. B ) C_ ( dom ( A o. B ) X. ran ( A o. B ) ) ) |
|
| 15 | 13 14 | mp1i | |- ( ph -> ( A o. B ) C_ ( dom ( A o. B ) X. ran ( A o. B ) ) ) |
| 16 | 1 12 15 | wunss | |- ( ph -> ( A o. B ) e. U ) |