This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being an undirected pseudograph, expressing the edges as "words". (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by AV, 10-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isupgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| isupgr.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | wrdupgr | ⊢ ( ( 𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋 ) → ( 𝐺 ∈ UPGraph ↔ 𝐸 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isupgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | isupgr.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | isupgr | ⊢ ( 𝐺 ∈ 𝑈 → ( 𝐺 ∈ UPGraph ↔ 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋 ) → ( 𝐺 ∈ UPGraph ↔ 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 5 | wrdf | ⊢ ( 𝐸 ∈ Word 𝑋 → 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ 𝑋 ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋 ) → 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ 𝑋 ) |
| 7 | 6 | fdmd | ⊢ ( ( 𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋 ) → dom 𝐸 = ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
| 8 | 7 | feq2d | ⊢ ( ( 𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋 ) → ( 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 9 | iswrdi | ⊢ ( 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝐸 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) | |
| 10 | wrdf | ⊢ ( 𝐸 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) | |
| 11 | 9 10 | impbii | ⊢ ( 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ 𝐸 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 12 | 8 11 | bitrdi | ⊢ ( ( 𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋 ) → ( 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ 𝐸 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 13 | 4 12 | bitrd | ⊢ ( ( 𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋 ) → ( 𝐺 ∈ UPGraph ↔ 𝐸 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |