This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word with length at least 2 is not empty. (Contributed by AV, 18-Jun-2018) (Proof shortened by AV, 14-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdlenge2n0 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → 𝑊 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1red | ⊢ ( 𝑊 ∈ Word 𝑉 → 1 ∈ ℝ ) | |
| 2 | 2re | ⊢ 2 ∈ ℝ | |
| 3 | 2 | a1i | ⊢ ( 𝑊 ∈ Word 𝑉 → 2 ∈ ℝ ) |
| 4 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 5 | 4 | nn0red | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℝ ) |
| 6 | 1 3 5 | 3jca | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 1 ∈ ℝ ∧ 2 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( 1 ∈ ℝ ∧ 2 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ ) ) |
| 8 | simpr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → 2 ≤ ( ♯ ‘ 𝑊 ) ) | |
| 9 | 1lt2 | ⊢ 1 < 2 | |
| 10 | 8 9 | jctil | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( 1 < 2 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 11 | ltleletr | ⊢ ( ( 1 ∈ ℝ ∧ 2 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ ) → ( ( 1 < 2 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → 1 ≤ ( ♯ ‘ 𝑊 ) ) ) | |
| 12 | 7 10 11 | sylc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → 1 ≤ ( ♯ ‘ 𝑊 ) ) |
| 13 | wrdlenge1n0 | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ≠ ∅ ↔ 1 ≤ ( ♯ ‘ 𝑊 ) ) ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ≠ ∅ ↔ 1 ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 15 | 12 14 | mpbird | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → 𝑊 ≠ ∅ ) |