This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word with length at least 2 is not empty. (Contributed by AV, 18-Jun-2018) (Proof shortened by AV, 14-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdlenge2n0 | |- ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> W =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1red | |- ( W e. Word V -> 1 e. RR ) |
|
| 2 | 2re | |- 2 e. RR |
|
| 3 | 2 | a1i | |- ( W e. Word V -> 2 e. RR ) |
| 4 | lencl | |- ( W e. Word V -> ( # ` W ) e. NN0 ) |
|
| 5 | 4 | nn0red | |- ( W e. Word V -> ( # ` W ) e. RR ) |
| 6 | 1 3 5 | 3jca | |- ( W e. Word V -> ( 1 e. RR /\ 2 e. RR /\ ( # ` W ) e. RR ) ) |
| 7 | 6 | adantr | |- ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> ( 1 e. RR /\ 2 e. RR /\ ( # ` W ) e. RR ) ) |
| 8 | simpr | |- ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> 2 <_ ( # ` W ) ) |
|
| 9 | 1lt2 | |- 1 < 2 |
|
| 10 | 8 9 | jctil | |- ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> ( 1 < 2 /\ 2 <_ ( # ` W ) ) ) |
| 11 | ltleletr | |- ( ( 1 e. RR /\ 2 e. RR /\ ( # ` W ) e. RR ) -> ( ( 1 < 2 /\ 2 <_ ( # ` W ) ) -> 1 <_ ( # ` W ) ) ) |
|
| 12 | 7 10 11 | sylc | |- ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> 1 <_ ( # ` W ) ) |
| 13 | wrdlenge1n0 | |- ( W e. Word V -> ( W =/= (/) <-> 1 <_ ( # ` W ) ) ) |
|
| 14 | 13 | adantr | |- ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> ( W =/= (/) <-> 1 <_ ( # ` W ) ) ) |
| 15 | 12 14 | mpbird | |- ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> W =/= (/) ) |