This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertices of a walk are connected by indexed edges. (Contributed by Alexander van der Vekens, 22-Jul-2018) (Revised by AV, 2-Jan-2021) (Proof shortened by AV, 4-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wlkvtxeledg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| Assertion | wlkvtxiedg | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∃ 𝑒 ∈ ran 𝐼 { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkvtxeledg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | 1 | wlkvtxeledg | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 3 | fvex | ⊢ ( 𝑃 ‘ 𝑘 ) ∈ V | |
| 4 | 3 | prnz | ⊢ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ≠ ∅ |
| 5 | ssn0 | ⊢ ( ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ≠ ∅ ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ≠ ∅ ) | |
| 6 | 4 5 | mpan2 | ⊢ ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ≠ ∅ ) |
| 7 | 6 | adantl | ⊢ ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ≠ ∅ ) |
| 8 | fvn0fvelrn | ⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ≠ ∅ → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ran 𝐼 ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ran 𝐼 ) |
| 10 | sseq2 | ⊢ ( 𝑒 = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ↔ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | |
| 11 | 10 | adantl | ⊢ ( ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ 𝑒 = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ↔ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 12 | simpr | ⊢ ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 13 | 9 11 12 | rspcedvd | ⊢ ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∃ 𝑒 ∈ ran 𝐼 { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ) |
| 14 | 13 | ex | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ∃ 𝑒 ∈ ran 𝐼 { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ) ) |
| 15 | 14 | ralimdva | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∃ 𝑒 ∈ ran 𝐼 { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ) ) |
| 16 | 2 15 | mpd | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∃ 𝑒 ∈ ran 𝐼 { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ) |