This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Undirected graphs
Vertex degree
vtxdusgr0edgnel
Metamath Proof Explorer
Description: A vertex in a simple graph has degree 0 iff there is no edge incident
with this vertex. (Contributed by AV , 17-Dec-2020) (Proof shortened by AV , 24-Dec-2020)
Ref
Expression
Hypotheses
vtxdushgrfvedg.v
⊢ V = Vtx ⁡ G
vtxdushgrfvedg.e
⊢ E = Edg ⁡ G
vtxdushgrfvedg.d
⊢ D = VtxDeg ⁡ G
Assertion
vtxdusgr0edgnel
⊢ G ∈ USGraph ∧ U ∈ V → D ⁡ U = 0 ↔ ¬ ∃ e ∈ E U ∈ e
Proof
Step
Hyp
Ref
Expression
1
vtxdushgrfvedg.v
⊢ V = Vtx ⁡ G
2
vtxdushgrfvedg.e
⊢ E = Edg ⁡ G
3
vtxdushgrfvedg.d
⊢ D = VtxDeg ⁡ G
4
usgruhgr
⊢ G ∈ USGraph → G ∈ UHGraph
5
1 2 3
vtxduhgr0edgnel
⊢ G ∈ UHGraph ∧ U ∈ V → D ⁡ U = 0 ↔ ¬ ∃ e ∈ E U ∈ e
6
4 5
sylan
⊢ G ∈ USGraph ∧ U ∈ V → D ⁡ U = 0 ↔ ¬ ∃ e ∈ E U ∈ e