This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The degree of a vertex in the union of two hypergraphs on the same vertex set is the sum of the degrees of the vertex in each hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 21-Dec-2017) (Revised by AV, 12-Dec-2020) (Proof shortened by AV, 19-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxduhgrun.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| vtxduhgrun.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | ||
| vtxduhgrun.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| vtxduhgrun.vh | ⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) | ||
| vtxduhgrun.vu | ⊢ ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 ) | ||
| vtxduhgrun.d | ⊢ ( 𝜑 → ( dom 𝐼 ∩ dom 𝐽 ) = ∅ ) | ||
| vtxduhgrun.g | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) | ||
| vtxduhgrun.h | ⊢ ( 𝜑 → 𝐻 ∈ UHGraph ) | ||
| vtxduhgrun.n | ⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) | ||
| vtxduhgrun.u | ⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐼 ∪ 𝐽 ) ) | ||
| Assertion | vtxduhgrun | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑈 ) ‘ 𝑁 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) +𝑒 ( ( VtxDeg ‘ 𝐻 ) ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxduhgrun.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | vtxduhgrun.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | |
| 3 | vtxduhgrun.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 4 | vtxduhgrun.vh | ⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) | |
| 5 | vtxduhgrun.vu | ⊢ ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 ) | |
| 6 | vtxduhgrun.d | ⊢ ( 𝜑 → ( dom 𝐼 ∩ dom 𝐽 ) = ∅ ) | |
| 7 | vtxduhgrun.g | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) | |
| 8 | vtxduhgrun.h | ⊢ ( 𝜑 → 𝐻 ∈ UHGraph ) | |
| 9 | vtxduhgrun.n | ⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) | |
| 10 | vtxduhgrun.u | ⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐼 ∪ 𝐽 ) ) | |
| 11 | 1 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun 𝐼 ) |
| 12 | 7 11 | syl | ⊢ ( 𝜑 → Fun 𝐼 ) |
| 13 | 2 | uhgrfun | ⊢ ( 𝐻 ∈ UHGraph → Fun 𝐽 ) |
| 14 | 8 13 | syl | ⊢ ( 𝜑 → Fun 𝐽 ) |
| 15 | 1 2 3 4 5 6 12 14 9 10 | vtxdun | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑈 ) ‘ 𝑁 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) +𝑒 ( ( VtxDeg ‘ 𝐻 ) ‘ 𝑁 ) ) ) |