This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Undirected graphs
Vertex degree
vtxdginducedm1lem1
Metamath Proof Explorer
Description: Lemma 1 for vtxdginducedm1 : the edge function in the induced subgraph
S of a pseudograph G obtained by removing one vertex N .
(Contributed by AV , 16-Dec-2021)
Ref
Expression
Hypotheses
vtxdginducedm1.v
⊢ V = Vtx ⁡ G
vtxdginducedm1.e
⊢ E = iEdg ⁡ G
vtxdginducedm1.k
⊢ K = V ∖ N
vtxdginducedm1.i
⊢ I = i ∈ dom ⁡ E | N ∉ E ⁡ i
vtxdginducedm1.p
⊢ P = E ↾ I
vtxdginducedm1.s
⊢ S = K P
Assertion
vtxdginducedm1lem1
⊢ iEdg ⁡ S = P
Proof
Step
Hyp
Ref
Expression
1
vtxdginducedm1.v
⊢ V = Vtx ⁡ G
2
vtxdginducedm1.e
⊢ E = iEdg ⁡ G
3
vtxdginducedm1.k
⊢ K = V ∖ N
4
vtxdginducedm1.i
⊢ I = i ∈ dom ⁡ E | N ∉ E ⁡ i
5
vtxdginducedm1.p
⊢ P = E ↾ I
6
vtxdginducedm1.s
⊢ S = K P
7
6
fveq2i
⊢ iEdg ⁡ S = iEdg ⁡ K P
8
1
fvexi
⊢ V ∈ V
9
8
difexi
⊢ V ∖ N ∈ V
10
3 9
eqeltri
⊢ K ∈ V
11
2
fvexi
⊢ E ∈ V
12
11
resex
⊢ E ↾ I ∈ V
13
5 12
eqeltri
⊢ P ∈ V
14
10 13
opiedgfvi
⊢ iEdg ⁡ K P = P
15
7 14
eqtri
⊢ iEdg ⁡ S = P