This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of 4 classes for 4 setvar variables. (Contributed by AV, 22-Jan-2019) (Proof shortened by Wolf Lammen, 31-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtocl4ga.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| vtocl4ga.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| vtocl4ga.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜌 ) ) | ||
| vtocl4ga.4 | ⊢ ( 𝑤 = 𝐷 → ( 𝜌 ↔ 𝜃 ) ) | ||
| vtocl4ga.5 | ⊢ ( ( ( 𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) → 𝜑 ) | ||
| Assertion | vtocl4ga | ⊢ ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇 ) ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl4ga.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | vtocl4ga.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | vtocl4ga.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜌 ) ) | |
| 4 | vtocl4ga.4 | ⊢ ( 𝑤 = 𝐷 → ( 𝜌 ↔ 𝜃 ) ) | |
| 5 | vtocl4ga.5 | ⊢ ( ( ( 𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) → 𝜑 ) | |
| 6 | 3 | imbi2d | ⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) → 𝜒 ) ↔ ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) → 𝜌 ) ) ) |
| 7 | 4 | imbi2d | ⊢ ( 𝑤 = 𝐷 → ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) → 𝜌 ) ↔ ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) → 𝜃 ) ) ) |
| 8 | 1 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) → 𝜑 ) ↔ ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) → 𝜓 ) ) ) |
| 9 | 2 | imbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) → 𝜓 ) ↔ ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) → 𝜒 ) ) ) |
| 10 | 5 | ex | ⊢ ( ( 𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) → ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) → 𝜑 ) ) |
| 11 | 8 9 10 | vtocl2ga | ⊢ ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) → ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) → 𝜒 ) ) |
| 12 | 11 | com12 | ⊢ ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) → ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) → 𝜒 ) ) |
| 13 | 6 7 12 | vtocl2ga | ⊢ ( ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇 ) → ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) → 𝜃 ) ) |
| 14 | 13 | impcom | ⊢ ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇 ) ) → 𝜃 ) |