This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Contraposition law for upper integers. (Contributed by NM, 28-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzneg | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → - 𝑀 ∈ ( ℤ≥ ‘ - 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzle | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑁 ) | |
| 2 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 3 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 4 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 5 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 6 | leneg | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 ≤ 𝑁 ↔ - 𝑁 ≤ - 𝑀 ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ↔ - 𝑁 ≤ - 𝑀 ) ) |
| 8 | 2 3 7 | syl2anc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ≤ 𝑁 ↔ - 𝑁 ≤ - 𝑀 ) ) |
| 9 | 1 8 | mpbid | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → - 𝑁 ≤ - 𝑀 ) |
| 10 | znegcl | ⊢ ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ ) | |
| 11 | znegcl | ⊢ ( 𝑀 ∈ ℤ → - 𝑀 ∈ ℤ ) | |
| 12 | eluz | ⊢ ( ( - 𝑁 ∈ ℤ ∧ - 𝑀 ∈ ℤ ) → ( - 𝑀 ∈ ( ℤ≥ ‘ - 𝑁 ) ↔ - 𝑁 ≤ - 𝑀 ) ) | |
| 13 | 10 11 12 | syl2an | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( - 𝑀 ∈ ( ℤ≥ ‘ - 𝑁 ) ↔ - 𝑁 ≤ - 𝑀 ) ) |
| 14 | 3 2 13 | syl2anc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( - 𝑀 ∈ ( ℤ≥ ‘ - 𝑁 ) ↔ - 𝑁 ≤ - 𝑀 ) ) |
| 15 | 9 14 | mpbird | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → - 𝑀 ∈ ( ℤ≥ ‘ - 𝑁 ) ) |