This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Contraposition law for upper integers. (Contributed by NM, 28-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzneg | |- ( N e. ( ZZ>= ` M ) -> -u M e. ( ZZ>= ` -u N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzle | |- ( N e. ( ZZ>= ` M ) -> M <_ N ) |
|
| 2 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 3 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 4 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 5 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 6 | leneg | |- ( ( M e. RR /\ N e. RR ) -> ( M <_ N <-> -u N <_ -u M ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M <_ N <-> -u N <_ -u M ) ) |
| 8 | 2 3 7 | syl2anc | |- ( N e. ( ZZ>= ` M ) -> ( M <_ N <-> -u N <_ -u M ) ) |
| 9 | 1 8 | mpbid | |- ( N e. ( ZZ>= ` M ) -> -u N <_ -u M ) |
| 10 | znegcl | |- ( N e. ZZ -> -u N e. ZZ ) |
|
| 11 | znegcl | |- ( M e. ZZ -> -u M e. ZZ ) |
|
| 12 | eluz | |- ( ( -u N e. ZZ /\ -u M e. ZZ ) -> ( -u M e. ( ZZ>= ` -u N ) <-> -u N <_ -u M ) ) |
|
| 13 | 10 11 12 | syl2an | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( -u M e. ( ZZ>= ` -u N ) <-> -u N <_ -u M ) ) |
| 14 | 3 2 13 | syl2anc | |- ( N e. ( ZZ>= ` M ) -> ( -u M e. ( ZZ>= ` -u N ) <-> -u N <_ -u M ) ) |
| 15 | 9 14 | mpbird | |- ( N e. ( ZZ>= ` M ) -> -u M e. ( ZZ>= ` -u N ) ) |