This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract the lower bound of an upper set of integers as its infimum. (Contributed by NM, 7-Oct-2005) (Revised by AV, 4-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uzinfi.1 | |- M e. ZZ |
|
| Assertion | uzinfi | |- inf ( ( ZZ>= ` M ) , RR , < ) = M |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzinfi.1 | |- M e. ZZ |
|
| 2 | ltso | |- < Or RR |
|
| 3 | 2 | a1i | |- ( M e. ZZ -> < Or RR ) |
| 4 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 5 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 6 | eluz2 | |- ( k e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ k e. ZZ /\ M <_ k ) ) |
|
| 7 | 4 | adantr | |- ( ( M e. ZZ /\ k e. ZZ ) -> M e. RR ) |
| 8 | zre | |- ( k e. ZZ -> k e. RR ) |
|
| 9 | 8 | adantl | |- ( ( M e. ZZ /\ k e. ZZ ) -> k e. RR ) |
| 10 | 7 9 | lenltd | |- ( ( M e. ZZ /\ k e. ZZ ) -> ( M <_ k <-> -. k < M ) ) |
| 11 | 10 | biimp3a | |- ( ( M e. ZZ /\ k e. ZZ /\ M <_ k ) -> -. k < M ) |
| 12 | 11 | a1d | |- ( ( M e. ZZ /\ k e. ZZ /\ M <_ k ) -> ( M e. ZZ -> -. k < M ) ) |
| 13 | 6 12 | sylbi | |- ( k e. ( ZZ>= ` M ) -> ( M e. ZZ -> -. k < M ) ) |
| 14 | 13 | impcom | |- ( ( M e. ZZ /\ k e. ( ZZ>= ` M ) ) -> -. k < M ) |
| 15 | 3 4 5 14 | infmin | |- ( M e. ZZ -> inf ( ( ZZ>= ` M ) , RR , < ) = M ) |
| 16 | 1 15 | ax-mp | |- inf ( ( ZZ>= ` M ) , RR , < ) = M |