This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge is a subset of vertices. (Contributed by Alexander van der Vekens, 19-Aug-2017) (Revised by AV, 15-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrf1o.e | |- E = ( iEdg ` G ) |
|
| usgrss.v | |- V = ( Vtx ` G ) |
||
| Assertion | usgrss | |- ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) C_ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrf1o.e | |- E = ( iEdg ` G ) |
|
| 2 | usgrss.v | |- V = ( Vtx ` G ) |
|
| 3 | ssrab2 | |- { x e. ~P V | ( # ` x ) = 2 } C_ ~P V |
|
| 4 | 2 1 | usgrfs | |- ( G e. USGraph -> E : dom E -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) |
| 5 | f1f | |- ( E : dom E -1-1-> { x e. ~P V | ( # ` x ) = 2 } -> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } ) |
|
| 6 | 4 5 | syl | |- ( G e. USGraph -> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } ) |
| 7 | 6 | ffvelcdmda | |- ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) e. { x e. ~P V | ( # ` x ) = 2 } ) |
| 8 | 3 7 | sselid | |- ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) e. ~P V ) |
| 9 | 8 | elpwid | |- ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) C_ V ) |