This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of usgredg2 , not using umgredg2 . (Contributed by Alexander van der Vekens, 11-Aug-2017) (Revised by AV, 16-Oct-2020) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | usgredg2.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| Assertion | usgredg2ALT | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredg2.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | 2 1 | usgrf | ⊢ ( 𝐺 ∈ USGraph → 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 4 | f1f | ⊢ ( 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐺 ∈ USGraph → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 6 | 5 | ffvelcdmda | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑋 ) ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 7 | fveq2 | ⊢ ( 𝑥 = ( 𝐸 ‘ 𝑋 ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝑥 = ( 𝐸 ‘ 𝑋 ) → ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) ) |
| 9 | 8 | elrab | ⊢ ( ( 𝐸 ‘ 𝑋 ) ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( ( 𝐸 ‘ 𝑋 ) ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) ) |
| 10 | 9 | simprbi | ⊢ ( ( 𝐸 ‘ 𝑋 ) ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) |
| 11 | 6 10 | syl | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) |